The silk that spiders use to build their webs, trap their prey and dangle from your ceiling is one of the strongest materials known. But it turns out it’s not simply the material’s exceptional strength that makes spider webs so resilient; it’s the material’s unusual combination of strength and stretchiness — silk’s characteristic way of first softening and then stiffening when pulled. These properties, scientists have found, vary depending on the forces applied, as well as on the overall design of the web.Pound-for-pound stronger than steel. Nature is always a good place to look for design dos and don'ts.
Markus Buehler, an associate professor of civil and environmental engineering (CEE) at MIT, has previously analyzed the complex, hierarchical structure of spider silk and its amazing strength — on a pound-for-pound basis, it’s stronger than steel. Now, Buehler and his colleagues have applied their analysis to the structure of the webs themselves, finding evidence of the key properties that make webs so resilient and relating those properties back to the molecular structure of silk fibers.
The lessons learned from this work, Buehler says, could not only help develop more damage-resistant synthetic materials, but could also provide design principles that might apply to networked systems such as the Internet or the electric grid.
Friday, February 3, 2012
Learning From Nature - Spider Web Edition
MIT News, via Mark Thoma:
Labels:
Didn't Know That,
Science and stuff
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment